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The study was motivated by the challenges of yield volatility in developing countries, which in turn 

affects people's livelihoods and slows economic development. Maize is a staple food in Tanzania, 

consumed widely across both rural and urban areas. It is vital for national food security, providing 

a major share of daily caloric intake. Economically, it supports millions of smallholder farmers 

through subsistence and income. This study aimed to predict maize yield in Tanzania using 

discriminant supervised classification model.  Data were collected using a structured 

questionnaire from 421 smallholder farmers in the Mbozi and Mvomero districts in Tanzania. Data 

analysis was performed using R programming 4.2.3. The results showed 0.867 classifier accuracy 

on the training sample, indicating a likelihood of the studied units being classified as low-yielding 

producers, with 13.3 percent of the expected cost of misclassification. Using the sample spilt 

approach, the study results on out-of-sample discovered the highest probability of farmers was 

classified as below average with 0.873 model performance and 12.7 expected costs of 

misclassification. Out of 100 cases (small farmers), 13 are misclassified, slightly fewer than what 

has been correctly classified. Applying the sample division approach, out of the 100 cases, 12.7 

are misclassified. The classification model results indicated that the out-of-sample improves the 

model accuracy compared to the training sample, suggesting the intervention in resource 

allocation in terms of subsidies, training programs, and access to better seeds and fertilizers to 

the producers below the average.  
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1. Introduction 

Maize stands as a cornerstone of global agriculture, widely cultivated and essential for food, feed, and 

industry (FAO, 2023). Its adaptability and high demand make it vital to food security and rural livelihoods 

worldwide. This is because it plays a role in food security, livestock feed, and industrial applications. Its 

significance is evaluated in the following dimensions: Firstly, maize is a food security and staple food supply 

for millions of people in Sub-Saharan Africa and Latin America. It is one of the top three cereals worldwide 

(together with rice and wheat) that contribute significantly to daily calorie intake. Secondly, it reduces costs 

for both rich and poor nations in terms of food security (Erenstein et al., 2022). Maize is a key staple in Africa, 

accounting for 30-50% of total caloric intake in countries such as Zambia and Malawi, where 90% of the 

population depends on it.  Maize plays a vital role in global food security as a staple for millions. Beyond 

human consumption, it is a major component of livestock feed, accounting for over 60% of global production 

and supporting the meat, dairy, and poultry industries. Additionally, maize serves as a key input in industrial 

applications, including biofuels and processed goods. 

Thirdly, maize is one of the most productive crops, allowing nations to dramatically boost their export 

earnings. The United States of America, Brazil, and Argentina are significant exporters, accounting for the 

majority of the maize consumed globally. In 2022, worldwide maize commerce reached 181 million metric 

tons, with maize exports adding billions to these economies  (FAO, 2023; Ribeiro-Duthie et al., 2021).Maize 

(Zea mays), commonly known as corn, is believed to have originated in southern Mexico over 9,000 years 

ago through the domestication of a wild grass called teosinte (Matsuoka et al., 2002). Indigenous peoples in 

the region played a crucial role in transforming this wild plant into a reliable food crop through generations of 

selective cultivation. As maize spread throughout the Americas, it became a central component of many 

cultures and diets. During the Columbian Exchange in the 15th and 16th centuries, it was introduced to 

Europe, Africa, and Asia, where it rapidly adapted to various climates and agricultural systems (Piperno & 

Flannery, 2001). This remarkable transformation from a wild grass in Mexico to a globally cultivated staple 

established maize as a cornerstone of modern agriculture, vital for food security, livestock feed, and industrial 

use. This crop contains nearly 72 percent starch, 10 percent protein, and 4 percent fat, supplying an energy 

density of 365 Kcal/100g.  

Moreover, it is grown throughout the world, with the United States, China, and Brazil being the top three 

maize-producing countries globally. Together, they produce approximately 563 million of the 717 million 

metric tons of maize annually (Ranum et al., 2014). In this regard, annual maize production stands at 

approximately 384 million metric tons for the United States, 273 million metric tons for China, and 108 million 

metric tons for Brazil. According to FAO statistics, it has been noted that in 2022, America was the topmost-

producing region for maize globally. In this viewpoint, the United States of America and Brazil have been 

accounting for 39 percent of the world's production. Furthermore, statistics indicate China to be the second 

largest producer, accounting for 24 percent (FAO, 2023).Since its adaptation approximately 9,000 years ago, 

maize has contributed to an increasing and varied role in universal agri-food systems. In the past decades, 

maize production has suddenly increased universally. This contributed to an increase in a combination 

of demand and technological development. This has pushed the yield increases and area expansion. It has 
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been further noted that maize is the leading cereal in terms of production bulk, and it will become the most 

cultivated crop in the next decade. Again, globally, it has been noted that maize is adapted to be used multi-

purposely to feed the population. Also, it is an imperative food crop, China, especially in sub-Saharan Africa, 

and Latin America, apart from other food crops in the regions (Erenstein et al., 2022). In east Africa, 

especially; Kenya, Uganda, Tanzania, and Ethiopia; yields have been rising slowly, from ~1.03 t/ha in 1961 

to ~1.75 t/ha in 2019 (+69%) (Epule et al., 2022). 

However, in developing countries, crop yields are lower than expected, which in turn affects production and 

economic growth (Akudugu et al., 2012; Wiggins. & Keats, 2013). Despite that, both production and 

productivity are still low in all of Sub-Saharan Africa, and agriculture continues to be an important economic 

sector (Ahmed et al., 2013). In most African countries, soil fertility has been declining due to low levels of 

fertilizer usage and limited access to water resources, which contribute to a decrease in maize productivity 

(Shi & Tao, 2014). On the other hand, the growing population in Africa puts pressure on agricultural resources 

together including maize yield and harvest area. Transversely, in Africa, access to advanced options for 

increasing the yield is insufficient (Epule et al., 2022). Africa is one of the region’s most severely affected by 

climatic and non-climatic factors. These drivers continue to limit maize and other crop yields, posing a 

significant threat to the continent’s food security (Tesfaye et al., 2015). In this response, many farmers have 

attempted to increase their harvest area as a strategy to boost maize production (Epule et al., 2011). In West 

Africa, low yields have been reported among small farmers in Ghana (Akudugu et al., 2012). 

In East Africa, particularly in Uganda, Woniala and Nyombi (2014) reported that low corn yield ranges from 

150 kg to 1992 kg/acre. Also, the problem of low crop yield has been noted in Tanzania (Haug & Hella, 2013).  

On the other hand, it has been noted that despite the interventions implemented by the government of 

Tanzania, such as subsidies and the elimination of unnecessary taxes, agricultural productivity is still low, 

especially for the marginalized smallholder farmers (Mkonda & He, 2018). Despite Tanzania’s 

implementation of subsidies and tax reforms aimed at improving input access for smallholder farmers, maize 

yields have seen only limited improvement. Challenges such as inefficient subsidy targeting, delays in input 

distribution, and limited farmer awareness reduce the effectiveness of these programs.  

Additionally, infrastructural constraints, poor market access, and climate-related stresses undermine 

productivity gains. Addressing these systemic issues alongside policy reforms is essential to translate 

subsidies into tangible yield improvements for smallholders (Mgonja et al., 2017; Saitoti & Ngalawa, 2020).  

While many studies have explored the factors limiting maize yields; few have evaluated the probability of 

smallholder farmers reaching expected yield levels, particularly using discriminant analysis as an analytical 

approach.  This paper contributes to the body of knowledge by revealing the likelihood of smallholder farmers 

who are at risk of producing low maize yields. This was further analyzed along with the sample split 

methodology for improving statistical power due to the low cost of the proposed discriminant model. 

2. Theoretical framework 

The paper has been grounded in three theories, namely, the Production function theory, human capital 

theory, and Cost-Benefit Analysis (CBA). The Production function theory was first 

developed (Cobb & Douglas, 1928) and aims to answer the question of how inputs are combined to produce 

Mbukwa (2025) 
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a particular level of output. The Cobb-Douglas production function is particularly widely used 

to describe agricultural production. It shows the relationship between inputs such as land, labor, capital, 

and technology and output. 

The Cobb-Douglas production function, while widely used, has key limitations in the context of smallholder 

farming. It assumes constant returns to scale and perfect competition, which rarely reflect the realities faced 

by smallholders who often operate under imperfect market conditions with limited access to resources. The 

model also fixes the elasticity of substitution between inputs at one, ignoring the limited flexibility in 

substituting factors like land and labor. It overlooks critical factors such as climate variability, risk, and shocks, 

which significantly affect smallholder yields. Furthermore, it treats inputs as homogeneous and fails to capture 

the dynamic nature of farming, such as learning and technology adoption over time. As a result, more flexible 

models like Translog or stochastic frontier analysis may offer better insights for analyzing smallholder 

agricultural production.  

However, the Cobb-Douglas production function and discriminant models serve different purposes in 

statistical and econometric modeling, so whether the Cobb-Douglas function is "best for variable 

identification" when using discriminant analysis depends on what you're trying to achieve. The purpose of the 

Cobb-Douglas function is to model output (continuous) as a function of inputs (e.g., labor, capital), whereas 

the Discriminant Model aims to classify the observations based on predictor variables into known classes.  

Several studies have critiqued the applicability of input-based production theories like the Cobb-Douglas 

production function in the context of developing economies, particularly where informal labor markets and 

subsistence farming dominate (Pingali & Sunder, 2017). Barrett et al. (2010) argues that assuming labor is a 

homogeneous input ignores variations in skill, experience, and time allocation across household members; 

Market Imperfections. In the context of this paper, input variables such as improved 

seeds, labour (hired and domestic labour respectively), fertilizer, pesticides, farm size, and livestock 

(goats, sheep, and chickens) are crucial for maize productivity, and other control variables have been used 

as a discriminating variable. 

The second important theory is the “pioneer theory of human capital,” originated by Becker (1964). 

He connected the idea that investments in education, training, and health can increase the productivity and 

economic value of a person as physical capital. Becker’s theory suggests that education and training 

enhance productivity, typically measured through years of formal schooling. However, excluding informal 

education, such as indigenous knowledge, can lead to model misclassification, especially in contexts like 

farming, where individuals with limited formal education may still possess high productivity due to traditional 

expertise. In this study, the use of local seed as a variable is justified, as it serves as a proxy for indigenous 

knowledge, capturing the informal skills and practices that significantly influence agricultural productivity, 

particularly within classification models like Quadratic Discriminant Analysis (QDA) (Becker, 1993; Schultz, 

1961). Also, a positive, significant effect of each additional year of education on maize yield has been noted 

(Solomon, 2019).  

The Cobb-Douglas function and Cost-Benefit Analysis match conceptually and practically when used 

together. Cobb-Douglas provides the technical efficiency or productivity estimates, while CBA evaluates 

whether those gains translate into economic value (Chirwa, 2025). 

African Journal of Applied Economics (AJAE), 1 (1) 
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 In agriculture, it is indicated that the level of education from the point of view of the number of years 

of training can determine the capacity of the farmer to adopt new methods of agriculture, to make reasonable 

decisions, and to manage resources effectively. It has been revealed a positive, significant effect of each 

additional year of education on maize yield (Solomon, 2019). The age of the respondent often reflects 

experience, which could influence farming decisions and productivity.  

Cost-benefit analysis (CBA), originated by (Coase, 1960). His theory emphasizes the relationship between 

the cost of resources and gain or production. Farmers need to balance the costs of resources (seeds, 

fertilizers, labor) with the expected increase in production (profitability) and sales. Farmers seek to utilize 

resources that will generate the highest return on investment (ROI). If the cost of resources (such 

as improved seeds) is high and the marginal yield increase is low, it may not be profitable to use these 

resources. Thus, the transition from identifying productivity drivers to employing discriminant analysis is not 

abrupt but rather a logical methodological progression. Identifying key productivity determinants is grounded 

in both theoretical frameworks and empirical evidence. However, while understanding these drivers is crucial, 

statistical classification techniques such as discriminant analysis offer additional analytical power. They 

enable the systematic classification of outcomes, such as yield status based on multiple covariates, thereby 

enhancing the ability to distinguish between different groups or performance levels within the population 

under study. Beyond the theoretical conceptualization, some empirical studies were carefully scrutinized to 

capture the relevant covariates and statistical modeling as per section 1.2 

3. Empirical review 

Since the research problem is based on classification modeling, understanding some of the drivers that affect 

productivity from the previous studies is indispensable. Obasi (2013) discovered that educational level, farm 

experience, farm size, extension exposure, and workforce as positively related to productivity. Previous 

studies have also reported other factors (land-to-work ratio, use of fertilizers, pesticides, manure, and 

household size) affecting land productivity studies (Urgessa, 2015). Shita et al. (2018) revealed that fertilizer 

and real domestic products affect productivity. Kakar et al. (2016) found that rainfall, acreage, fertilizer, and 

credit had a positive impact on agricultural productivity. Nuno and Baker (2021) found that the agricultural 

experience of the head of household, the number of economically active family members, and quantity of 

organic fertilizer applied, the irrigated land area, and arable land fertility significantly affect agricultural 

productivity. Adimassu and Kessler (2016) have shown that livestock, land tenure, labor, and social capital 

affect yield productivity as a result of a lack of rainfall. Moreover, Srivastava et al. (2007) argued that quadratic 

discriminant modeling is a Bayesian distribution-based classifier that minimizes the expected Bregman 

divergence of any class conditional distribution and also minimizes the expected misclassification costs.  The 

study is in line with quadratic classification because it is specified in the context where the outcome is a two-

group outcome, where their sample variance-covariances are not equal. Thus, the classification of the cases 

given several continuous predictor variables, unlike other classification models such as logistic regression, 

tree-based models etc. 

In terms of crop yield, the model has proven to be appropriate because the farmers are likely to produce low, 

medium, or high yields. These classes are known in advance. Morais and Lima (2018) argued that quadratic 

discriminant modeling is appropriate for supervised classification problems. It is responsible for predicting the 

Mbukwa (2025) 
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odds of each class as a Gaussian distribution and uses posterior probability to estimate a maximum-likelihood 

class. Among other documented statistical prediction methods, Mupangwa et al. (2020) found that the 

discriminant model has the highest predictive power for maize yield. Empirically, Alhassan et al. (2016) used 

the quadratic discriminant model to classify farmers into known risks (low, medium, and high risks) that they 

encountered earlier in maize production. The results revealed classification rates of 80 percent (low risk), 89 

percent (medium risk), and 93 percent (high risk). Although these scholars used the same classification model 

in question, however, they have failed to refine the estimates, farmers' forecast estimates (probability) of a 

real product below or above average (FAO, 2010; Urassa, 2010). Agrawal et al. (2012), used the time series 

of wheat yield 30 years (1970-2000) to divide the outcome into three groups (congenially, normal, and 

unfavorable) based on yield distribution. Using these three classes as the known populations, the 

discriminant model function was fitted. The scores generated were used as independent variables in the 

modelling. 

Statistical modeling is a powerful tool for developing and testing theories by way of causal explanation, 

prediction, and description (Shmueli, 2010). Model accuracy is the most imperative part of the construction 

of a supervised model. In this regard, a good generalization performance must have a sensible data-splitting 

approach, and this is decisive for model authentication (Fall et al., 2015; Xu & Goodacre, 2018). In the present 

study, the model performance was assessed by splitting the datasets into a training set and a test set without 

introducing any bias (Joseph, 2022). The first part of the data is meant for fitting (estimation of the unknown 

parameters) in the model, whereas the second part is for assessing the accuracy. On the other hand, the 

training data is used to fit the model, while the testing data is used to measure how well the model predicts 

new and unseen data. For practical purposes, therefore, the overall study sample was divided into a modeling 

set/training sample (80 percent) and an external evaluation/out-of-sample set (20 percent ) (Martin et al., 

2012). 

4. Methodology 

This paper used the secondary data collected from the smallholder farmers (unit of analysis) who are the 

members of small farmers in Tanzania, namely Mtandao wa Vikundi vya Wakulima Wadogo Tanzania 

(MVIWATA). The data focused on smallholder farmers responsible for the maize cultivation. The data were 

collected via a survey between October 2015 to mid of February 2016, where two districts, namely Mbozi 

and Mvomero were sampled. The protocol for conducting the study was observed and the letter was granted 

by Mzumbe University. A letter was used to introduce the government officers from the regional level to the 

local level, where data used to be collected. By having an official letter introducing the researchers, the 

process of gaining access to data is well streamlined. The letter and formal introduction ensure that the study 

complies with institutional protocols, ethical guidelines, and permissions from relevant authorities. This helps 

to demonstrate that the research is being conducted responsibly, which is essential both for the integrity of 

the study and for protecting the rights of participants. 

 A standard structured questionnaire was used to collect structured data, responsible for answering specific 

research questions for this study. Of 430 cases, a random sample size of 421 was met (97.9% response 

rate), where the analyses were based. To arrive at the lowest unit of analysis, multistage random sampling 

was used alongside five stages. In stage one, two regions were purposively selected based on agro-climatic 

African Journal of Applied Economics (AJAE), 1 (1) 
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zones. In stage two, one district was randomly selected, from each region. This was followed by selecting 

the wards each district. Households were then selected randomly from village registers using simple random 

sampling 

Data analysis was performed using the R programming language (version 4.3.2). To validate the performance 

of the quadratic classifier model, the sample partitioning approach was used  (Shmueli, 2010; Martin et al., 

2012; Korjus et al., 2016).  This means the sample consisting of the response rate was partitioned into two 

sub-samples: a large sample (training) and a small sample (test) for prediction and performance assessment. 

The process is governed by two measures or criteria. In this paper sample split ratio (80:20), where 80 percent 

of the dataset is classified as training and 20 percent is testing, was used. This is done on random split bases, 

in which cases were randomly divided into training and testing sets based on a specific ratio. Despite the 

limitations associated with small sample sizes, a stratified 80:20 train-test split was employed to ensure a 

balanced representation of outcome classes and to minimize sampling bias. This approach is consistent with 

strategies recommended for moderate-sized datasets. To assess model performance, multiple classification 

metrics were used, including sensitivity and specificity. A model is considered to perform well if it achieves 

both sensitivity and specificity of at least 80% (Kohavi, 1995; Yadav et al., 2021). 

In this current paper, the measured variables were defined. The outcome variable ( maize yield), has been 

defined as a ratio of the amount of crops harvested in terms of a kilograms or metric tonnes (t) per crop area 

per hectare (ha) (FAO, 2010). Following similar grounds, the present study used the yield as an outcome 

defined as output (number of bags in tonnes per acre. Furthermore, the recall approach was used to capture 

the quantity of maize along the respective units from selected small farmers who participated in the study 

(Me-Nsope & Larkins, 2016). Given this approach, the target individual smallholder farmers that were 

interviewed and requested to provide the quantities harvested in his/her field/farm for the previous farming 

season within six months. The respondents provided the production in terms of bags as well as the known 

number of tins/buckets which are based on kg or metric tons.  

To establish the classes (below or above the average), the categorization process was based on the National 

Bureau of Statistics report (The Tanzania National Sample Census of, 2011). The report noted that the annual 

maize per acre in Tanzania is 1.3 tonnes (3.75 bags per acre). However, this figure found so far as compared 

to that of South Africa and the World at large stands at 2.3 tonnes per hectare (7.805 bags per acre) and 4.3 

tonnes per hectare (12.42 bags per acre) respectively (FAO, 2010; Urassa, 2010). Therefore, the midpoint 

of the maize yield between South Africa and the World estimate is given as (7.805 +12.42)/2 = 10.11 bags 

per acre. Thus, in this study, the middle value has been taken as a benchmark for the smallholder farmers 

whose productivity is either below (population one- 1 ) or above the average (population two- 2 ).   

The predictor variables were measured in terms of scale. These include: age of the respondent (age), number 

of year at school (nsyear), household size (hsize), number of goats (ngoat), number of sheep (nsheep), 

number of chicken (nchicken), quantity of the local seed in kilogram (qtylocalseedmaize),  number of hired 

labor (nhiredlabor), number of home labour (nhomelabor), quantity of improved seed in kilograms 

(qtyimprseedmzrain), quantity of pesticides in litres (qtypestmzrain), quantity of fertilizer in kilograms 

(qtyfertmzrain), past harvest of maize in kilograms (pastharv), farm size (fsmzr2), quantity of maize sales in 

Mbukwa (2025) 
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kilograms (qtysamz_yr2), cost of improved seed maize (cost_imprmaizer), cost of fertilizer (cost_fertmaizer),  

cost of pesticides (cost_Lpestmaizer). Because, there are many predictors,  the best inputs with the power 

to discriminate cases to the respective classes were selected based on Wilks lambda statistic (El Ouardighi 

et al., 2007).  

Classification modelling   

Since the outcome variable is group-based, supervised statistical modeling is appropriate to use. Supervised 

classification refers to predictive statistical analysis where a model is built in such a way that a new situation 

is speculated via known facts (Maindonald, 2012). From this standpoint, the classes to which the 

observational vectors are classified are known in advance. The Linear Discriminant Model is one of the 

statistical methods used. It predicts the probability of known target groups given the selected features in the 

form of a linear combination (Härdle & Simar, 2003; Raykov & Marcoulides, 2008). Once a sample has been 

divided into two classes, it is assumed that the sample variance-covariance matrices for two groups are the 

same ( 1 2S S=
) whereas each group is characterized by a multivariate normal distribution, both 1( )f x

 and 

2 ( )f x
 are associated densities with the mean vectors and covariance matrices of 1 1, 

and 2 2, 

correspondingly. Given the random variable 1 2[ , ,..., ]
T

px x xx =
 and the attached labels 1 and 2 , then, 

the joint distribution is represented as follows: 
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Nevertheless, for practical purposes, the linear discriminant model is recommended if the variance–

covariances are the same. It should be noted that for practical situations, the sample variance-covariance 

matrix is used in place of the population variance-covariance.  

Quadratic classifier 

The quadratic classification for classification of the normal population is recommended to be used when the 

sample variance-covariance are dissimilar 1 2(s )s
 for populations one and two, such that: 

1 1 2 2 2 1 2: ( ,s ) and  : ( ,s )  when sN N s1π X π X
. Now, if 1( )f x

is the probability density function (p.d.f) of 

population one ( 1
π

) and 2 ( )f x
 is the p.d.f of population two ( 2

π
). The allocation rule that minimizes the 

ECM is given by: 
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1

x π
 if  

1 1 1 1

0 1 2 0 11 1 2 2 0
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Where 

2

1

(1| 2)

(2 |1)

c p
w

c p
=

 

Allocate 0 2  to x π
 otherwise. 
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( )1 11
1 1 1 2 2 2
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s
x s x x s x

s
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= + − 
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1s : sample variance-covariance of the observed data group 1  

2s
: sample variance-covariance of observed data group 2 

1x : sample mean vector for the observed data group 1 

2x
: sample mean vector for the observed data group 2 

1p
: prior probabilities of the population one ( 1

π
) 

0  x
: observed data matrix 

2p
= prior probabilities of the population two ( 2π ) 

2(1| 2)c p
=cost of misclassifying cases to population one ( 1

π
) multiplied by its prior probability 

1(2 |1)c p
= cost of misclassifying cases to population two ( 1

π
) multiplied by its prior probability 

In practice, before fitting the discriminant model, the equality of covariance matrices between the two groups 

must be tested. In this article, the Box’s M test, an exact test, was used to check the violation of this 

assumption. The test can be transformed into a statistic helping as an approximate test based on chi-squared 

and F distributions. If the computed value exceeds the tabulated value at a specified level of significance 

(Friendly & Sigal, 2020; Jiamwattanapong & Ingadapa, 2021) or reject the null hypothesis if the p-value is 

smaller than the level of significance (Ahmed et al., 2013; Hair et al., 2014). 

 

5. Results  

Results for the equality of the sample covariance matrices 

Table 1 indicates the results of the statistical test for the equality of the two groups. The findings discovered 

that there is a strong, statistically significant evidence to argue  that the sample covariance matrices for the 

group of farmers whose productivity is below the average are dissimilar from those of above the average, as 

the value is less than 5% alpha (p-value < 2.2e-16) (Ahmed et al., 2013). From this standpoint, the quadratic 

Mbukwa (2025) 
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classifier is found to be relevant to classifying the cases into the known groups, and the two groups, below 

and above, yield, respectively. This means the sample variances and covariances are unequal across 

groups, violating a key LDA assumption. The results provide strong justification for using QDA instead of 

LDA.  

Table 1: Testing the equality of the sample variance-covariance matrices 

Chi-square test Degree of freedom (df) p-value 

526.53 21 p-value < 2.2e-16 

 Source: Findings (2025) 

 

Feature Selection Results 

Table 2 indicates six selected features out of nineteen variables for discriminating the smallholder producers 

into the respective groups based on the Wilks lambda statistic (El Ouardighi et al., 2007). These variables 

have been defined in section 3) of the methodology. The selection is of great importance because the input 

measurements help in discriminating the cases to the respective classes with small noise. Thus, the findings 

indicated that the retained predictors have the smallest p-values, less than 5% alpha and except for the 

number of goats judged at 10% level of significance. This means the most significant discriminating variables 

were selected based on the highest discriminatory power to ensure the accuracy of the classification rule 

with a low error rate. Wilks' statistics are crucial for determining the importance of a variable in terms of its 

discriminatory power to substantiate the groups (e.g., above against below-average producers). The smaller 

values propose that the predictor values are capable of distinguishing between these groups. Ranking 

significantly, the findings revealed the variables affecting small farmers' productivity, including past harvests 

(in kilograms), cost of fertilizer in Tanzanian shillings, quantity of maize sales, household size, local seed 

quantity in kilograms, and number of goats. The findings show that past harvest quantity and fertilizer cost 

under rainfed conditions were the strongest discriminators (Wilks' Lambda = 0.54 and 0.46; p < 0.001). Maize 

sales (0.45), household size (0.44), and local seed use (0.43; p < 0.05) also contributed significantly, while 

goat ownership showed marginal significance (0.43; p = 0.0798). These results suggest that both production-

related variables and household characteristics play a key role in classifying maize yield groups, highlighting 

the value of QDA in identifying factors influencing smallholder productivity.  
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Table 2: Stepwise Discriminant Analysis Results 

Variables  Wilks.lambda F.statistics.overall p.value.overall F.statistics.diff indep. p.value.diff 

pastharv: Past 
harvest in kgs  

0.5401367 356.7296 5.218831e-58 356.729597 0.0000*** 

cfertmzr: Cost of 
fertilizer for maize 
under rainfed in 
Tanzania in shillings 

0.4642074 241.2297 2.202060e-70 68.371190 0.0000*** 

qtysamz: quantity of 
maize sales in 
kilograms 

0.4482790 171.0747 2.706007e-72 14.817020 0.0001*** 

hsize: Household 
size (hsize) 

0.4385046 133.1697 3.996934e-73 9.272816 0.0025*** 

qlsdmz: quantity of 
the local seed in 
kilograms  

0.4339466 108.2678 5.695180e-73 4.358971 
 

0.0374** 

ngoats: number of 
goats  

0.4307382 91.19010 1.358753e-72 3.083676 0.0798* 

Source: Findings (2025 (***) Statistically significant at 1% level of significance; (**) Statistically significant at 

5 % a level of significance; (*) Statistically significant at 1 % level of significance 

 

Proportion Estimation by Group 

Table 3 indicates the proportion of smallholder farmers in terms of maize productivity.  Based on the prior 

Probabilities, the findings show that 60.33% of the studied smallholder farmers are producing below average. 

Therefore, the findings propose a higher occurrence of below-average smallholders in the studied sample of 

producers.  

Comparing group means is essential in discriminant classification analysis, as it reveals significant 

differences between predefined groups in this case, smallholder farmers with below- and above-average 

maize yields. The QDA results show clear distinctions, indicating non-random yield variation. Above-average 

farmers spent more on fertilizer (149,063 TZS vs. 43,805 TZS), had higher past harvests (17.12 kg vs. 5.36 

kg), and sold more maize (12.23 kg vs. 1.62 kg), highlighting the role of input use and market orientation. 

Below-average farmers relied more on local seeds, which may limit productivity. Greater goat ownership in 

higher-yielding households suggests livestock supports resilience. These findings call for policies enhancing 

input access, market linkages, and mixed farming support. 
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Table 3: Quadratic Discriminant Classifier 

Prior probability of groups 

Below the average Above the average 

0.6033254 0.3966746 

Yield 

status  

Predictors Variables 

Past harvest 

in kgs 

(pastharv) 

Cost of 

fertilizer’s maize 

under rainfed 

(cfertmzr) 

Household 

size (hsize) 

quantity of 

the local 

seed in 

kilogram 

(qlsdmz) 

quantity of maize sales in 

kilograms(qtysamz) 

Number of 

goats reared 

(ngoat) 

Below the 

average 
5.362087 43805.01 5.775591 4.241142 1.622689 1.118110 

Above the 

average 
17.116946 149062.87 6.479042 3.526946 12.227545 2.299401 

Source: Findings (2025) 

 

Predicated Counts per Group 

Table 4 indicates the predicted counts for the studied small farmers. The findings indicated that, out of 421 

studied cases, 258 of them were predicted to be below the average, whereas 163 were found above the 

average maize productivity, respectively. This predicted figure opens up a discussion and intervention on 

why smallholder farmers are characterized by a high likelihood of producing below the average. The 

discussion has been well articulated in section four (4) of the paper.   

Table 4: Total Predicted Counts per Group 

Status 
Maize yield 

Below the average Above the average 

Predicted cases 258 163 

Source: Findings (2025) 

 

Actual Group Predicted Membership 

Table 5 illustrates the actual group and predicted group membership. The study results disclosed that out of 

the 421 smallholder producers interrogated, 228 of them whose maize productivity was below the average, 

were correctly classified with productivity below the average while 26 of the farmers were misclassified above 

the average given their yield. On the other hand, 137 of the cases were correctly classified with yield above 

the average while 30 of the cases misclassified. These results may prove that among the studied cases, 

probably there is a great chance to argue that a high number of cases being below the average, may be 

correctly placed justifying that they are failing to meet their expectation.  
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Table 5:  Predicted Group Membership (Confusion Matrix) 

Actual  

Group  

Predicted group 

Below the average Above the average Total 

Below the average 228 26 254 

Above the average 30 137 167 

Predicted size 258 163 421 

Source: Findings (2025) 

 

Quadratic Discriminant Prediction 

Table 6 indicates the model results using the quadratic classifier function. In the confusion matrix, the findings 

indicate that out of 228 producers correctly categorized as below average, 30 producers were incorrectly 

categorized as above average. Contrarywise, 26 producers classified as above average were below average. 

This categorization accuracy directs the model's effectiveness in predicting productivity categories. 

Furthermore, the findings revealed that the overall accuracy of the correctly classified cases was 0.867. The 

smallholder farmers that were correctly classified to be below the average were 89.76% (sensitivity), whereas 

about 82.04% (specificity) of the smallholder farmers were classified to be above average. This high accuracy 

suggests that the proposed quadratic discriminant model can be reliably used to identify farmers who may 

need support or targeting interventions aimed at improving the performance of these farmers. In this paper, 

the interpretation of the classification metrics was based on: >=90% (excellent); 80–89% (good); 70–

79%(fair); <70% (poor) as proposed (Zhou, Obuchowski & McClish, 2011; Pepe, 2003).  

Given the Kappa value of 0.721, the results indicate a substantial agreement between the predicted and 

actual classifications. This signified that the model provides reliable classifications beyond chance. On the 

other hand, the findings showed that the maximum posterior distribution (positive predictive value=PPV), the 

probability of the farmers whose maize yield is below average given that their results are positive, was 0.8834. 

The results revealed a high likelihood that producers identified as below average truly are in that category. 

This enhances confidence in targeting support programs effectively. The minimum posterior distribution (the 

probability of the farmers whose maize yield is above the average to be attained) i.e. negative predictive 

value (NPV = 0.8405).  

Based on positive predictive value results, it is likely to argue that the ratio of smallholder farmers truly 

classified as below the average they really deserve to be below the established threshold, and hence they 

fail to meet their expectation on maize productivity. On the other hand, the ratio of the net predictive value 

may suggest that cases meet their maize yield expectation to some extent. 
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Table 6: Predictive Membership using original data set Model Validation (Confusion Matrix and 

Statistics) 

Confusion matrix Below average Above average 

Below average 228 30 

Above average 26 137 

Metric 
 

Value 

Accuracy 
 

0.867 

95% CI 
 

(0.8308, 0.8979) 

No Information Rate 
 

0.6033 

P-Value [Acc > NIR] 
 

<2e-16 

Kappa 
 

0.721 

Sensitivity 
 

0.8976 

Specificity 
 

0.8204 

Pos Pred Value 
 

0.8837 

Neg Pred Value 
 

0.8405 

Prevalence 
 

0.6033 

Detection Rate 
 

0.5416 

Detection Prevalence 
 

0.6128 

Balanced Accuracy 
 

0.859 

'Positive' Class 
 

below the average 

Source: Findings (2025) 

Table 7 indicates the out-of-the-sample results based on the sample split approach. This is important to find 

out if improves the model accuracy. The findings indicated a better accuracy rate of 

( ))9256.0802.0:%95(873.0 −CI compared to the predicted results under the training sample

( )( ) 0.8979 0.8308, : CI 95% 0.867 . Since the kappa statistic is close to 1, indicates that the model is very 

reliable and accurate. Compared with other statistical tests, therefore, there is enough statistical evidence to 

conclude that the test set provides more consistent outcomes with small errors, since most of the statistical 

tests are within the reasonable range. Therefore, it is more likely to argue that the expected high maize yield 

is difficult to achieve given the predicted results, unless some intervention measures are taken to rescue the 

small farmers. On the assessment of the model fit using the test set, it was discovered that the model 

indicates the soundness for the counts of the small-holder farmers whose maize yield is below the average 

(Sensitivity=0.8837), while the ability of the model under this set indicates that the farmers whose maize yield 

is above the average (Specificity=0.8500). 
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Table 7: Validation (Test) Set Prediction Results 

Confusion matrix Below average Above average 

Below average 76 6 

Above average 10 34 

Metric 
 

Value 

Accuracy 
 

0.873 

95% CI 
 

(0.802, 0.9256) 

No Information Rate 
 

0.6825 

P-Value [Acc > NIR] 
 

6.17E-07 

Kappa 
 

0.7146 

Sensitivity 
 

0.8837 

Specificity 
 

0.85 

Pos Pred Value 
 

0.9268 

Neg Pred Value 
 

0.7727 

Prevalence 
 

0.6825 

Detection Rate 
 

0.6032 

Detection Prevalence 
 

0.6508 

Balanced Accuracy 
 

0.8669 

'Positive' Class 
 

below the average 

Source: Findings (2025) 

 

6. Discussion  

The paper intended to find out the extent to which the sample split approach contributes to the body of 

knowledge by revealing the likelihood of the smallholder farmers who are at risk of producing low maize 

productivity. In line with the descriptive statistics, some indispensable findings have been revealed along with 

studied small farmers. Firstly, it has been revealed that smallholder farmers experience a low average past 

harvest from the maize crop. The low average maize productivity of the past harvest may contribute to low 

motivation to cultivate more. Secondly, it has been found on average that, it is too expensive to buy fertilizers 

compared to the large-scale farmers classified above the average. This may be attributed to the fact that the 

study participants experience limited financial resources to afford to buy in bulk compared to the giant 

farmers. Thirdly, on average most of these farmers use the local seed instead of improved seeds and this is 

among the reasons that suggest the low yield.  Dominantly, they use local seed may be because of the limited 

financial and assets resources. Fourth, the findings showed that they are not able to keep a large number of 

goats on average and probably fail to supplement the natural manure for restoring land fertility. 

Based on the results in Table 2, the present paper has revealed crucial results in line with the statistical 

significance. The low p-value of 5.218831e-58 for past harvest proposes that this variable has a meaningful 

impact on maize productivity. This shows that interventions pointing to this variable could significantly raise 

productivity. Significantly, the findings propose that the cost of fertilizers impacts productivity in terms of 

affording to buy farm inputs. Thus, smallholder producers below average are likely to suffer because of high 

input costs. This, in turn, may affect their capability to invest in essential resources for agricultural 
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sustainability. Given the household size and livestock results, the findings propose that the household size 

and the number of goats suggest that families with livestock may experience diverse production dynamics. 

Thus, the findings suggest that livestock management is key to improving productivity. The local seed variable 

affects productivity significantly among smallholder producers. The findings suggest that increasing the level 

of productivity, access to improved seed varieties, or better seed management practices are key. 

Concerning Table 3 of the presented results mean across the below and above the average, the comparison 

across the identified key dominant variable has been taken into account. In terms of mean group comparison, 

the results have revealed very interesting results. This means that each independent variable (past harvests, 

cost of fertilizer, household size, quantity of local seed, quantity of maize sales, and number of goats) depicts 

distinct variances between the two groups. Past Harvests: the findings depict that the past harvest for below-

average producers is 5.36 kgs, whereas for above-average producers, it is relatively higher at 17.12 kgs. In 

this perspective, the results propose that the past harvest performance is a strong gauge of the present yield 

likely. Cost of Fertilizer: small producers who are classified as below-average incur an average cost of 

43,805.01 Tanzanian shillings (Tshs), whereas above-average producers spend 149,062.87 Tshs. This 

discrepancy shows that the more efficient farmers may have a greater chance to invest in fertilizers, and in 

turn, contribute to high yields. Household size: The findings show that the mean household size for below-

average small farmers is nearly 5.78, whereas above-average producers have a somewhat larger household 

size of 6.48. The findings may suggest that larger households can contribute more labor for farming. Quantity 

of Local Seed: the findings indicate that the below-average small farmers use an average of 4.24 kgs of local 

seed, while above-average smallholders use 3.53 kgs. The results suggest that above-average producers 

may use higher-quality seeds or more efficient practices, even with less quantity. Quantity of maize sales: 

there is a stark contrast in maize sales: below-average producers sell an average of 1.62 kgs, while above-

average producers sell 12.23 kgs. This substantial difference highlights the economic implications of 

production efficiency and market access. Number of goats: the findings indicate that the average number of 

goats is 1.12 for below-average producers and 2.30 for above-average producers respectively. These results 

propose that livestock ownership might be associated with better productivity. This in turn increases the 

additional in-flow for boosting farming activities. 

The QDA results show that both production-related factors and household characteristics significantly 

distinguish between below- and above-average maize yield groups. Past harvest and fertilizer expenditure 

were the strongest discriminators (Wilks' Lambda = 0.54 and 0.46, p < 0.001), emphasizing the role of input 

use. Maize sales and household size also contributed, reflecting market orientation and potential labor 

supply. Local seed use had a moderate effect (p < 0.05), while goat ownership was marginally significant. 

Higher fertilizer spending among better-performing farmers may reflect not just investment capacity, but also 

improved access to credit, markets, or extension services, underscoring systemic access disparities. 

While the results show that above-average farmers spend significantly more on fertilizer, this difference may 

not only reflect greater investment willingness or agronomic knowledge, but also underlying differences in 

access to credit, extension services, or input markets. Farmers with better financial access or geographic 

proximity to input suppliers may find it easier to acquire and apply fertilizers. These structural advantages 

may amplify productivity independently of intrinsic farming practices, suggesting that input access 
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constraints, not just individual decisions, shape yield outcomes. On the other hand, larger households may 

offer more labor for farm activities, they also consume more resources, potentially straining food and income. 

Therefore, the impact of household size on productivity depends on the balance between labor contribution 

and consumption needs. 

Based on the training sample, the study has revealed the highest positive predictive value results/posterior 

mean distribution to be high compared to the net predictive value in the training sample. This represents the 

average value of the parameter of the updated distribution given the observed measurement from the 

selected input variables. In the quadratic classification estimated results, the posterior mean for each class 

represents the estimated probability of that class given the input data where most of the sampled smallholder 

farmers were found to produce maize yield below the average. This is a class having the highest estimated 

probability. The highest posterior mean or highest estimated probability results imply that smallholder farmers 

are likely to produce below the average and hence fail to meet expectations. The posterior mean intends to 

detect the group that the model guesses to be the most likely or greatest plausible result for the selected 

predictors. Given that assessing the model fit using the test set, the findings indicated that both sensitivity 

and specificity are also used. Since their values are close to one for the cases being correctly classified below 

and above the average, respectively, there is a low rate of misclassification (Kaivanto, 2008).  

Furthermore, the apparent error rate was further compared to the out-of-sample (test set) to assess the 

accuracy of the selected model. The results have discovered the smallest expected error (12.7%). The lowest 

error rate signifies that the sample spilt results on out–of–sample is effective in increasing the accuracy 

results of the classifier quadratic model (Shmuel, 2010). On the other hand, the current findings, based on 

the sample partition based on the test, support the claim that the out-of-sample (test) performance is reliable 

as benchmarked to the practical results depicted by the training set (Montesinos López et al., 2022). 

This is interesting because it addresses a core concern in predictive modeling: whether a model trained on 

one dataset (training set) can generalize well to new, unseen data (test set). When the sample partition shows 

that the QDA model performs similarly on the test data as it does on the training data, it indicates the model 

has good out-of-sample reliability and is not overfitting. This is interesting because it demonstrates that the 

model’s predictive power is not limited to the training sample; it generalizes well to new observations. The 

alignment between test and training results supports the model’s robustness and practical utility, 

strengthening confidence in using the QDA model to inform real-world policy or decision-making for improving 

maize yields. 

In terms of generalized results, such as low rates of yield, the current study findings are comparable to the 

past studies (Akudugu et al., 2012; Wiggins, S. & Keats, 2013; Woniala, J, Nyombi, 2014) as reported that 

smallholder farmers are faced with low crop yield in developing countries. However, the previous studies did 

not discuss the question of how likely the study sample of small farmers is to fail to meet the highest 

expectation of maize productivity. Therefore, the present study has added value to the body of knowledge 

including the analysis with likelihood analysis results on the status of the maize productivity. On the 

performance of the classifier based on the training, the current study results have been judged by the 

apparent error rates (13.3%). The current results do not conquer with previous findings as revealed by 
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(Olarinde et al., 2010). Importantly, the present study has been well generalized as a resulting model of the 

sample split approach. 

Generally, the categorization accuracy directs the model's effectiveness in predicting productivity categories. 

This high accuracy proposes that the proposed quadratic discriminant model can be reliably used to identify 

farmers who may need support or targeting interventions aimed at improving the performance of these 

farmers. In this present paper, the results revealed a high likelihood that producers identified as below 

average truly are in that category. This enhances confidence in targeting support programs effectively 

7. Conclusion  

The present study was designed to find out the extent to which the sample splitting approach minimizes the 

loss function of the quadratic supervised classifier by considering the case of maize yield in Tanzania. 

Furthermore, it has been revealed that the discriminatory variables (past harvest in kilograms, quantification 

of fertilizer in kilogram, quantity of maize sale, quantity of the local seed, household size, and several goat 

rearing) that were retained aided in classifying the smallholder farmers to the respective classes of being 

below. Through these retained subsets of variables, it has been discovered that quadratic discriminant 

machine learning has improved its performance. 

Given the methodological (proposed discriminant technique) justification, the findings indicated a test set to 

outperform compared to the training set. On the other hand, the present study has revealed an interesting 

result indicating small farmers are likely to fail to meet their expectations because the positive predictive value 

or posterior mean is high with the test sample where loss function was found to decrease. This is an indication 

that Also, more of the study participants produced below their expectations, which was not documented in 

the previous studies. Again, the results discovered that the selected inputs add value by updating the belief 

having been evidenced from the previous studies.  

Along with the discovered results, however, the present study has come up with an answer to what factors 

can contribute to better yield for small farmers. In this regard, the past yield, improved seed, quantity of 

fertilizers used, household size of the source of manpower, volume of sales of the harvest, and number of 

goats as a source of manure and income diversification via selling the goats.  

The present study is important to farmers and policy practitioners because of the following key issues: Initially, 

identifying Performance Gaps: by classifying farmers according to their yield performance, the paper has 

uncovered the elements that lead to either low or high yields. This insight can enable farmers to comprehend 

their position in comparison to their counterparts and identify particular areas of their agricultural practices 

that may require enhancement. On the other hand, the above-average producers are investing more in inputs, 

suggesting a “rich get richer” effect, where wealthier farmers continue to advance while poorer ones fall 

behind. To address this, policies should promote Inclusive strategies that are essential to ensure all farmers 

benefit from growth. 

Secondly, customized agricultural practices: the findings obtained from quadratic modeling can assist in 

formulating specific recommendations for various groups of farmers. For instance, those with yields below 

the average may need targeted interventions, including optimized crop rotation methods, improved soil 
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management strategies, or advanced irrigation techniques. Conversely, farmers achieving above-average 

yields can be analyzed to uncover best practices that could be implemented by their peers. Thirdly, data-

informed decision-making: The findings from the research offer farmers tangible, data-informed insights that 

can guide their choices regarding crop selection, resource distribution, and investment in innovative 

technologies or practices. This approach can enhance risk management and facilitate more strategic 

planning within their operations. With these results, the present study recommends the policy intervention 

cutting across the underlined focus. 

Economic recommendations: To improve smallholder maize productivity in Tanzania, interventions should 

address the key factors of past harvest, fertilizer cost, household size, local seed use, maize sales, and goat 

ownership. Expanding input subsidies through programs like NAIVS can ease cost barriers, while 

strengthening community seed systems can boost access to quality local varieties. Promoting crop-livestock 

integration and improving post-harvest practices can enhance sustainability and food security. Tailored 

extension services and improved market access through infrastructure or digital tools are also crucial. These 

efforts should align with national strategies such as ASDP II for effective implementation. However, including 

digital-based innovations could further strengthen the classification modeling with minimal risk, improving 

precision and implementation efficiency. 

 Also, it noted that the variation revealed in terms of the identified key dominant discriminating variables 

suggests that producers above average are likely to invest more in better farm inputs. This, in turn which in 

turn leads to better harvests. In other words, better farm inputs influence households to enhance their overall 

productivity and sales. Therefore, it recommends addressing these identified gaps to improve the efficiency 

of the producers below average. Based on the sample division technique, on the other hand, the following 

are important to be in place:  first is the targeted Interventions; on identified high sensitivity and predictive 

accuracy, the study recommends allowing agricultural agencies to focus resources on producers classified 

as below average. This can improve their likelihood of increasing productivity as well as the economic 

practicability. Secondly, the need for resource allocation is greatly important, this is because the findings 

have revealed the category of farmers who are struggling. Therefore, the allocation of resources in terms of 

subsidies, training programs, and access to better seeds and fertilizers is key. 
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