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The study was motivated by the challenges of yield volatility in developing countries, which in turn
affects people's livelihoods and slows economic development. Maize is a staple food in Tanzania,
consumed widely across both rural and urban areas. It is vital for national food security, providing
a major share of daily caloric intake. Economically, it supports millions of smallholder farmers
through subsistence and income. This study aimed to predict maize yield in Tanzania using
discriminant supervised classification model. Data were collected using a structured
questionnaire from 421 smallholder farmers in the Mbozi and Mvomero districts in Tanzania. Data
analysis was performed using R programming 4.2.3. The results showed 0.867 classifier accuracy
on the training sample, indicating a likelihood of the studied units being classified as low-yielding
producers, with 13.3 percent of the expected cost of misclassification. Using the sample spilt
approach, the study results on out-of-sample discovered the highest probability of farmers was
classified as below average with 0.873 model performance and 12.7 expected costs of
misclassification. Out of 100 cases (small farmers), 13 are misclassified, slightly fewer than what
has been correctly classified. Applying the sample division approach, out of the 100 cases, 12.7
are misclassified. The classification model results indicated that the out-of-sample improves the
model accuracy compared to the training sample, suggesting the intervention in resource
allocation in terms of subsidies, training programs, and access to better seeds and fertilizers to
the producers below the average.
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1. Introduction

Maize stands as a cornerstone of global agriculture, widely cultivated and essential for food, feed, and
industry (FAO, 2023). Its adaptability and high demand make it vital to food security and rural livelihoods
worldwide. This is because it plays a role in food security, livestock feed, and industrial applications. Its
significance is evaluated in the following dimensions: Firstly, maize is a food security and staple food supply
for millions of people in Sub-Saharan Africa and Latin America. It is one of the top three cereals worldwide
(together with rice and wheat) that contribute significantly to daily calorie intake. Secondly, it reduces costs
for both rich and poor nations in terms of food security (Erenstein et al., 2022). Maize is a key staple in Africa,
accounting for 30-50% of total caloric intake in countries such as Zambia and Malawi, where 90% of the
population depends on it. Maize plays a vital role in global food security as a staple for millions. Beyond
human consumption, it is a major component of livestock feed, accounting for over 60% of global production
and supporting the meat, dairy, and poultry industries. Additionally, maize serves as a key input in industrial
applications, including biofuels and processed goods.

Thirdly, maize is one of the most productive crops, allowing nations to dramatically boost their export
earnings. The United States of America, Brazil, and Argentina are significant exporters, accounting for the
majority of the maize consumed globally. In 2022, worldwide maize commerce reached 181 million metric
tons, with maize exports adding billions to these economies (FAO, 2023; Ribeiro-Duthie et al., 2021).Maize
(Zea mays), commonly known as corn, is believed to have originated in southern Mexico over 9,000 years
ago through the domestication of a wild grass called teosinte (Matsuoka et al., 2002). Indigenous peoples in
the region played a crucial role in transforming this wild plant into a reliable food crop through generations of
selective cultivation. As maize spread throughout the Americas, it became a central component of many
cultures and diets. During the Columbian Exchange in the 15th and 16th centuries, it was introduced to
Europe, Africa, and Asia, where it rapidly adapted to various climates and agricultural systems (Piperno &
Flannery, 2001). This remarkable transformation from a wild grass in Mexico to a globally cultivated staple
established maize as a cornerstone of modern agriculture, vital for food security, livestock feed, and industrial
use. This crop contains nearly 72 percent starch, 10 percent protein, and 4 percent fat, supplying an energy
density of 365 Kcal/100g.

Moreover, it is grown throughout the world, with the United States, China, and Brazil being the top three
maize-producing countries globally. Together, they produce approximately 563 million of the 717 million
metric tons of maize annually (Ranum et al., 2014). In this regard, annual maize production stands at
approximately 384 million metric tons for the United States, 273 million metric tons for China, and 108 million
metric tons for Brazil. According to FAO statistics, it has been noted that in 2022, America was the topmost-
producing region for maize globally. In this viewpoint, the United States of America and Brazil have been
accounting for 39 percent of the world's production. Furthermore, statistics indicate China to be the second
largest producer, accounting for 24 percent (FAO, 2023).Since its adaptation approximately 9,000 years ago,
maize has contributed to an increasing and varied role in universal agri-food systems. In the past decades,
maize production has suddenly increased universally. This contributed to an increase in a combination
of demand and technological development. This has pushed the yield increases and area expansion. It has
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been further noted that maize is the leading cereal in terms of production bulk, and it will become the most
cultivated crop in the next decade. Again, globally, it has been noted that maize is adapted to be used multi-
purposely to feed the population. Also, it is an imperative food crop, China, especially in sub-Saharan Africa,
and Latin America, apart from other food crops in the regions (Erenstein et al., 2022). In east Africa,
especially; Kenya, Uganda, Tanzania, and Ethiopia; yields have been rising slowly, from ~1.03 t/ha in 1961
to ~1.75 t/ha in 2019 (+69%) (Epule et al., 2022).

However, in developing countries, crop yields are lower than expected, which in turn affects production and
economic growth (Akudugu et al., 2012; Wiggins. & Keats, 2013). Despite that, both production and
productivity are still low in all of Sub-Saharan Africa, and agriculture continues to be an important economic
sector (Ahmed et al., 2013). In most African countries, soil fertility has been declining due to low levels of
fertilizer usage and limited access to water resources, which contribute to a decrease in maize productivity
(Shi & Tao, 2014). On the other hand, the growing population in Africa puts pressure on agricultural resources
together including maize yield and harvest area. Transversely, in Africa, access to advanced options for
increasing the yield is insufficient (Epule et al., 2022). Africa is one of the region’s most severely affected by
climatic and non-climatic factors. These drivers continue to limit maize and other crop yields, posing a
significant threat to the continent’s food security (Tesfaye et al., 2015). In this response, many farmers have
attempted to increase their harvest area as a strategy to boost maize production (Epule et al., 2011). In West
Africa, low yields have been reported among small farmers in Ghana (Akudugu et al., 2012).

In East Africa, particularly in Uganda, Woniala and Nyombi (2014) reported that low corn yield ranges from
150 kg to 1992 kg/acre. Also, the problem of low crop yield has been noted in Tanzania (Haug & Hella, 2013).
On the other hand, it has been noted that despite the interventions implemented by the government of
Tanzania, such as subsidies and the elimination of unnecessary taxes, agricultural productivity is still low,
especially for the marginalized smallholder farmers (Mkonda & He, 2018). Despite Tanzania’s
implementation of subsidies and tax reforms aimed at improving input access for smallholder farmers, maize
yields have seen only limited improvement. Challenges such as inefficient subsidy targeting, delays in input
distribution, and limited farmer awareness reduce the effectiveness of these programs.

Additionally, infrastructural constraints, poor market access, and climate-related stresses undermine
productivity gains. Addressing these systemic issues alongside policy reforms is essential to translate
subsidies into tangible yield improvements for smallholders (Mgonja et al., 2017; Saitoti & Ngalawa, 2020).
While many studies have explored the factors limiting maize yields; few have evaluated the probability of
smallholder farmers reaching expected yield levels, particularly using discriminant analysis as an analytical
approach. This paper contributes to the body of knowledge by revealing the likelihood of smallholder farmers
who are at risk of producing low maize yields. This was further analyzed along with the sample split
methodology for improving statistical power due to the low cost of the proposed discriminant model.

2. Theoretical framework

The paper has been grounded in three theories, namely, the Production function theory, human capital
theory, and Cost-Benefit Analysis (CBA). The  Production function  theory  was first
developed (Cobb & Douglas, 1928) and aims to answer the question of how inputs are combined to produce
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a particular level  of output. The Cobb-Douglas production function is particularly widely — used
to describe agricultural production. It shows the relationship between inputs such as land, labor, capital,
and technology and output.

The Cobb-Douglas production function, while widely used, has key limitations in the context of smallholder
farming. It assumes constant returns to scale and perfect competition, which rarely reflect the realities faced
by smallholders who often operate under imperfect market conditions with limited access to resources. The
model also fixes the elasticity of substitution between inputs at one, ignoring the limited flexibility in
substituting factors like land and labor. It overlooks critical factors such as climate variability, risk, and shocks,
which significantly affect smallholder yields. Furthermore, it treats inputs as homogeneous and fails to capture
the dynamic nature of farming, such as learning and technology adoption over time. As a result, more flexible
models like Translog or stochastic frontier analysis may offer better insights for analyzing smallholder
agricultural production.

However, the Cobb-Douglas production function and discriminant models serve different purposes in
statistical and econometric modeling, so whether the Cobb-Douglas function is "best for variable
identification" when using discriminant analysis depends on what you're trying to achieve. The purpose of the
Cobb-Douglas function is to model output (continuous) as a function of inputs (e.g., labor, capital), whereas
the Discriminant Model aims to classify the observations based on predictor variables into known classes.
Several studies have critiqued the applicability of input-based production theories like the Cobb-Douglas
production function in the context of developing economies, particularly where informal labor markets and
subsistence farming dominate (Pingali & Sunder, 2017). Barrett et al. (2010) argues that assuming labor is a
homogeneous input ignores variations in skill, experience, and time allocation across household members;
Market Imperfections. In  the context of this paper, input variables such as improved
seeds, labour (hired and domestic labour respectively), fertilizer, pesticides, farm size, and livestock
(goats, sheep, and chickens) are crucial for maize productivity, and other control variables have been used
as a discriminating variable.

The second important theory is the “pioneer theory of human capital,” originated by Becker (1964).
He connected the idea that investments in education, training, and health can increase the productivity and
economic value of a person as physical capital. Becker's theory suggests that education and training
enhance productivity, typically measured through years of formal schooling. However, excluding informal
education, such as indigenous knowledge, can lead to model misclassification, especially in contexts like
farming, where individuals with limited formal education may still possess high productivity due to traditional
expertise. In this study, the use of local seed as a variable is justified, as it serves as a proxy for indigenous
knowledge, capturing the informal skills and practices that significantly influence agricultural productivity,
particularly within classification models like Quadratic Discriminant Analysis (QDA) (Becker, 1993; Schultz,
1961). Also, a positive, significant effect of each additional year of education on maize yield has been noted
(Solomon, 2019).

The Cobb-Douglas function and Cost-Benefit Analysis match conceptually and practically when used
together. Cobb-Douglas provides the technical efficiency or productivity estimates, while CBA evaluates
whether those gains translate into economic value (Chirwa, 2025).
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In agriculture, itis indicated that the level of education from the point of view of the number of years
of training can determine the capacity of the farmer to adopt new methods of agriculture, to make reasonable
decisions, and to manage resources effectively. It has been revealed a positive, significant effect of each
additional year of education on maize yield (Solomon, 2019). The age of the respondent often reflects
experience, which could influence farming decisions and productivity.

Cost-benefit analysis (CBA), originated by (Coase, 1960). His theory emphasizes the relationship between
the cost of resources and gain or production. Farmers need to balance the costs of resources (seeds,
fertilizers, labor) with the expected increase in production (profitability) and sales. Farmers seek to utilize
resources that will generate the highest return on investment (ROIl). If the cost of resources (such
as improved seeds) is high and the marginal yield increase is low, it may not be profitable to use these
resources. Thus, the transition from identifying productivity drivers to employing discriminant analysis is not
abrupt but rather a logical methodological progression. Identifying key productivity determinants is grounded
in both theoretical frameworks and empirical evidence. However, while understanding these drivers is crucial,
statistical classification techniques such as discriminant analysis offer additional analytical power. They
enable the systematic classification of outcomes, such as yield status based on multiple covariates, thereby
enhancing the ability to distinguish between different groups or performance levels within the population
under study. Beyond the theoretical conceptualization, some empirical studies were carefully scrutinized to
capture the relevant covariates and statistical modeling as per section 1.2

3. Empirical review

Since the research problem is based on classification modeling, understanding some of the drivers that affect
productivity from the previous studies is indispensable. Obasi (2013) discovered that educational level, farm
experience, farm size, extension exposure, and workforce as positively related to productivity. Previous
studies have also reported other factors (land-to-work ratio, use of fertilizers, pesticides, manure, and
household size) affecting land productivity studies (Urgessa, 2015). Shita et al. (2018) revealed that fertilizer
and real domestic products affect productivity. Kakar et al. (2016) found that rainfall, acreage, fertilizer, and
credit had a positive impact on agricultural productivity. Nuno and Baker (2021) found that the agricultural
experience of the head of household, the number of economically active family members, and quantity of
organic fertilizer applied, the irrigated land area, and arable land fertility significantly affect agricultural
productivity. Adimassu and Kessler (2016) have shown that livestock, land tenure, labor, and social capital
affect yield productivity as a result of a lack of rainfall. Moreover, Srivastava et al. (2007) argued that quadratic
discriminant modeling is a Bayesian distribution-based classifier that minimizes the expected Bregman
divergence of any class conditional distribution and also minimizes the expected misclassification costs. The
study is in line with quadratic classification because it is specified in the context where the outcome is a two-
group outcome, where their sample variance-covariances are not equal. Thus, the classification of the cases
given several continuous predictor variables, unlike other classification models such as logistic regression,
tree-based models etc.

In terms of crop yield, the model has proven to be appropriate because the farmers are likely to produce low,
medium, or high yields. These classes are known in advance. Morais and Lima (2018) argued that quadratic
discriminant modeling is appropriate for supervised classification problems. It is responsible for predicting the
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odds of each class as a Gaussian distribution and uses posterior probability to estimate a maximum-likelihood
class. Among other documented statistical prediction methods, Mupangwa et al. (2020) found that the
discriminant model has the highest predictive power for maize yield. Empirically, Alhassan et al. (2016) used
the quadratic discriminant model to classify farmers into known risks (low, medium, and high risks) that they
encountered earlier in maize production. The results revealed classification rates of 80 percent (low risk), 89
percent (medium risk), and 93 percent (high risk). Although these scholars used the same classification model
in question, however, they have failed to refine the estimates, farmers' forecast estimates (probability) of a
real product below or above average (FAO, 2010; Urassa, 2010). Agrawal et al. (2012), used the time series
of wheat yield 30 years (1970-2000) to divide the outcome into three groups (congenially, normal, and
unfavorable) based on yield distribution. Using these three classes as the known populations, the
discriminant model function was fitted. The scores generated were used as independent variables in the
modelling.

Statistical modeling is a powerful tool for developing and testing theories by way of causal explanation,
prediction, and description (Shmueli, 2010). Model accuracy is the most imperative part of the construction
of a supervised model. In this regard, a good generalization performance must have a sensible data-splitting
approach, and this is decisive for model authentication (Fall et al., 2015; Xu & Goodacre, 2018). In the present
study, the model performance was assessed by splitting the datasets into a training set and a test set without
introducing any bias (Joseph, 2022). The first part of the data is meant for fitting (estimation of the unknown
parameters) in the model, whereas the second part is for assessing the accuracy. On the other hand, the
training data is used to fit the model, while the testing data is used to measure how well the model predicts
new and unseen data. For practical purposes, therefore, the overall study sample was divided into a modeling
set/training sample (80 percent) and an external evaluation/out-of-sample set (20 percent ) (Martin et al.,
2012).

4. Methodology

This paper used the secondary data collected from the smallholder farmers (unit of analysis) who are the
members of small farmers in Tanzania, namely Mtandao wa Vikundi vya Wakulima Wadogo Tanzania
(MVIWATA). The data focused on smallholder farmers responsible for the maize cultivation. The data were
collected via a survey between October 2015 to mid of February 2016, where two districts, namely Mbozi
and Mvomero were sampled. The protocol for conducting the study was observed and the letter was granted
by Mzumbe University. A letter was used to introduce the government officers from the regional level to the
local level, where data used to be collected. By having an official letter introducing the researchers, the
process of gaining access to data is well streamlined. The letter and formal introduction ensure that the study
complies with institutional protocols, ethical guidelines, and permissions from relevant authorities. This helps
to demonstrate that the research is being conducted responsibly, which is essential both for the integrity of
the study and for protecting the rights of participants.

A standard structured questionnaire was used to collect structured data, responsible for answering specific
research questions for this study. Of 430 cases, a random sample size of 421 was met (97.9% response
rate), where the analyses were based. To arrive at the lowest unit of analysis, multistage random sampling
was used alongside five stages. In stage one, two regions were purposively selected based on agro-climatic
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zones. In stage two, one district was randomly selected, from each region. This was followed by selecting
the wards each district. Households were then selected randomly from village registers using simple random
sampling

Data analysis was performed using the R programming language (version 4.3.2). To validate the performance
of the quadratic classifier model, the sample partitioning approach was used (Shmueli, 2010; Martin et al.,
2012; Korjus et al., 2016). This means the sample consisting of the response rate was partitioned into two
sub-samples: a large sample (training) and a small sample (test) for prediction and performance assessment.
The process is governed by two measures or criteria. In this paper sample split ratio (80:20), where 80 percent
of the dataset is classified as training and 20 percent is testing, was used. This is done on random split bases,
in which cases were randomly divided into training and testing sets based on a specific ratio. Despite the
limitations associated with small sample sizes, a stratified 80:20 train-test split was employed to ensure a
balanced representation of outcome classes and to minimize sampling bias. This approach is consistent with
strategies recommended for moderate-sized datasets. To assess model performance, multiple classification
metrics were used, including sensitivity and specificity. A model is considered to perform well if it achieves
both sensitivity and specificity of at least 80% (Kohavi, 1995; Yadav et al., 2021).

In this current paper, the measured variables were defined. The outcome variable ( maize yield), has been
defined as a ratio of the amount of crops harvested in terms of a kilograms or metric tonnes (t) per crop area
per hectare (ha) (FAO, 2010). Following similar grounds, the present study used the yield as an outcome
defined as output (number of bags in tonnes per acre. Furthermore, the recall approach was used to capture
the quantity of maize along the respective units from selected small farmers who participated in the study
(Me-Nsope & Larkins, 2016). Given this approach, the target individual smallholder farmers that were
interviewed and requested to provide the quantities harvested in his/her field/farm for the previous farming
season within six months. The respondents provided the production in terms of bags as well as the known
number of tins/buckets which are based on kg or metric tons.

To establish the classes (below or above the average), the categorization process was based on the National
Bureau of Statistics report (The Tanzania National Sample Census of, 2011). The report noted that the annual
maize per acre in Tanzania is 1.3 tonnes (3.75 bags per acre). However, this figure found so far as compared
to that of South Africa and the World at large stands at 2.3 tonnes per hectare (7.805 bags per acre) and 4.3
tonnes per hectare (12.42 bags per acre) respectively (FAO, 2010; Urassa, 2010). Therefore, the midpoint
of the maize yield between South Africa and the World estimate is given as (7.805 +12.42)/2 = 10.11 bags
per acre. Thus, in this study, the middle value has been taken as a benchmark for the smallholder farmers

whose productivity is either below (population one- ”1) or above the average (population two- 2 ).

The predictor variables were measured in terms of scale. These include: age of the respondent (age), number
of year at school (nsyear), household size (hsize), number of goats (ngoat), number of sheep (nsheep),
number of chicken (nchicken), quantity of the local seed in kilogram (gtylocalseedmaize), number of hired
labor (nhiredlabor), number of home labour (nhomelabor), quantity of improved seed in kilograms
(qtyimprseedmzrain), quantity of pesticides in litres (qtypestmzrain), quantity of fertilizer in kilograms
(qtyfertmzrain), past harvest of maize in kilograms (pastharv), farm size (fsmzr2), quantity of maize sales in
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kilograms (qtysamz_yr2), cost of improved seed maize (cost_imprmaizer), cost of fertilizer (cost_fertmaizer),
cost of pesticides (cost_Lpestmaizer). Because, there are many predictors, the best inputs with the power
to discriminate cases to the respective classes were selected based on Wilks lambda statistic (El Ouardighi
et al., 2007).

Classification modelling

Since the outcome variable is group-based, supervised statistical modeling is appropriate to use. Supervised
classification refers to predictive statistical analysis where a model is built in such a way that a new situation
is speculated via known facts (Maindonald, 2012). From this standpoint, the classes to which the
observational vectors are classified are known in advance. The Linear Discriminant Model is one of the
statistical methods used. It predicts the probability of known target groups given the selected features in the
form of a linear combination (Hardle & Simar, 2003; Raykov & Marcoulides, 2008). Once a sample has been
divided into two classes, it is assumed that the sample variance-covariance matrices for two groups are the

same (Sl - SZ) whereas each group is characterized by a multivariate normal distribution, both f(x) and

F,(x) are associated densities with the mean vectors and covariance matrices of 'ul’zland Hor X

.
correspondingly. Given the random variable X =D %0 %] and the attached labels tand”2, then,
the joint distribution is represented as follows:

f(x|7,) =%exp(—%(x- %.)s (X — %, )j
(27)2 |s|? for 1=1.2 (1)

Nevertheless, for practical purposes, the linear discriminant model is recommended if the variance-
covariances are the same. It should be noted that for practical situations, the sample variance-covariance
matrix is used in place of the population variance-covariance.

Quadratic classifier

The quadratic classification for classification of the normal population is recommended to be used when the
sample variance-covariance are dissimilar (8, #5,) for populations one and two, such that:
m :N(Xps) and m, 1 N(X,,s,) whens, s, Now, if 1) is the probability density function (p.d.f) of

population one (™) and f,(x) is the p.d.f of population two (™2 ). The allocation rule that minimizes the
ECM s given by:
Allocate %o 10 ™1 jf

_%Z(g (Sl_l_ S2_1)),4(0 + ()t(lsl_l - Xzsz_l)l(o -A2 |0g W
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o cai2)p,
Where 1D,
Allocate %o 1© ™2 otherwise.
A= % In (@] +%
Where 5, |
51 sample variance-covariance of the observed data group 1

52, sample variance-covariance of observed data group 2

X sample mean vector for the observed data group 1

Xl

2: sample mean vector for the observed data group 2

P prior probabilities of the population one (™)

%o - observed data matrix

P2 - prior probabilities of the population two ("2)
c|2)p, =cost of misclassifying cases to population one (™) multiplied by its prior probability

c21Dp= cost of misclassifying cases to population two (™) multiplied by its prior probability

In practice, before fitting the discriminant model, the equality of covariance matrices between the two groups
must be tested. In this article, the Box’s M test, an exact test, was used to check the violation of this
assumption. The test can be transformed into a statistic helping as an approximate test based on chi-squared
and F distributions. If the computed value exceeds the tabulated value at a specified level of significance
(Friendly & Sigal, 2020; Jiamwattanapong & Ingadapa, 2021) or reject the null hypothesis if the p-value is
smaller than the level of significance (Ahmed et al., 2013; Hair et al., 2014).

5. Results
Results for the equality of the sample covariance matrices

Table 1 indicates the results of the statistical test for the equality of the two groups. The findings discovered
that there is a strong, statistically significant evidence to argue that the sample covariance matrices for the
group of farmers whose productivity is below the average are dissimilar from those of above the average, as
the value is less than 5% alpha (p-value < 2.2e-16) (Ahmed et al., 2013). From this standpoint, the quadratic
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classifier is found to be relevant to classifying the cases into the known groups, and the two groups, below
and above, yield, respectively. This means the sample variances and covariances are unequal across
groups, violating a key LDA assumption. The results provide strong justification for using QDA instead of
LDA.

Table 1: Testing the equality of the sample variance-covariance matrices

Chi-square test Degree of freedom (df) p-value

526.53 21 p-value < 2.2e-16

Source: Findings (2025)

Feature Selection Results

Table 2 indicates six selected features out of nineteen variables for discriminating the smallholder producers
into the respective groups based on the Wilks lambda statistic (EI Ouardighi et al., 2007). These variables
have been defined in section 3) of the methodology. The selection is of great importance because the input
measurements help in discriminating the cases to the respective classes with small noise. Thus, the findings
indicated that the retained predictors have the smallest p-values, less than 5% alpha and except for the
number of goats judged at 10% level of significance. This means the most significant discriminating variables
were selected based on the highest discriminatory power to ensure the accuracy of the classification rule
with a low error rate. Wilks' statistics are crucial for determining the importance of a variable in terms of its
discriminatory power to substantiate the groups (e.g., above against below-average producers). The smaller
values propose that the predictor values are capable of distinguishing between these groups. Ranking
significantly, the findings revealed the variables affecting small farmers' productivity, including past harvests
(in kilograms), cost of fertilizer in Tanzanian shillings, quantity of maize sales, household size, local seed
quantity in kilograms, and number of goats. The findings show that past harvest quantity and fertilizer cost
under rainfed conditions were the strongest discriminators (Wilks' Lambda = 0.54 and 0.46; p < 0.001). Maize
sales (0.45), household size (0.44), and local seed use (0.43; p < 0.05) also contributed significantly, while
goat ownership showed marginal significance (0.43; p = 0.0798). These results suggest that both production-
related variables and household characteristics play a key role in classifying maize yield groups, highlighting
the value of QDA in identifying factors influencing smallholder productivity.
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Table 2: Stepwise Discriminant Analysis Results

Variables Wilks.lambda F.statistics.overall p.value.overall F.statistics.diff indep. p.value.diff

pastharv: Past

. 0.5401367 356.7296 5.218831e-58 356.729597 0.0000**
harvest in kgs

cfertmzr: Cost of
fertilizer for maize
under rainfed in
Tanzania in shillings

0.4642074 241.2297 2.202060e-70 68.371190 0.0000***

gtysamz: quantity of
maize sales in 0.4482790 171.0747 2.706007e-72 14.817020 0.0001***
kilograms

hsize: Household 0.4385046 133.1697 3.9969346-73 9.272816 0.0025%
size (hsize)

glsdmz: quantity of

the local seed in 0.4339466 108.2678 5.695180e-73 4.358971

kilograms 0.0374*

ngoats: number of

goats 0.4307382 91.19010 1.358753e-72 3.083676 0.0798*

Source: Findings (2025 (***) Statistically significant at 1% level of significance; (**) Statistically significant at
5 % a level of significance; (*) Statistically significant at 1 % level of significance

Proportion Estimation by Group

Table 3 indicates the proportion of smallholder farmers in terms of maize productivity. Based on the prior
Probabilities, the findings show that 60.33% of the studied smallholder farmers are producing below average.
Therefore, the findings propose a higher occurrence of below-average smallholders in the studied sample of
producers.

Comparing group means is essential in discriminant classification analysis, as it reveals significant
differences between predefined groups in this case, smallholder farmers with below- and above-average
maize yields. The QDA results show clear distinctions, indicating non-random yield variation. Above-average
farmers spent more on fertilizer (149,063 TZS vs. 43,805 TZS), had higher past harvests (17.12 kg vs. 5.36
kg), and sold more maize (12.23 kg vs. 1.62 kg), highlighting the role of input use and market orientation.
Below-average farmers relied more on local seeds, which may limit productivity. Greater goat ownership in
higher-yielding households suggests livestock supports resilience. These findings call for policies enhancing
input access, market linkages, and mixed farming support.
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Table 3: Quadratic Discriminant Classifier

Prior probability of groups

Below the average Above the average
0.6033254 0.3966746
Predictors Variables
quantity of
Yield Past harvest , .Cos‘t of . the local , . . Number of
. fertilizer's maize Household , quantity of maize sales in
status in kgs : . \ seed in . goats reared
under rainfed size (hsize) . kilograms(qtysamz)
(pastharv) kilogram (ngoat)
(cfertmazr)
(qlsdmz)
Below the 367087 43805.01 5775591 4241142 1622689 1118110
average
:\E):r\;zlhe 17.116946 149062.87 6.479042 3.526946 12.227545 2.299401

Source: Findings (2025)

Predicated Counts per Group

Table 4 indicates the predicted counts for the studied small farmers. The findings indicated that, out of 421
studied cases, 258 of them were predicted to be below the average, whereas 163 were found above the
average maize productivity, respectively. This predicted figure opens up a discussion and intervention on
why smallholder farmers are characterized by a high likelihood of producing below the average. The
discussion has been well articulated in section four (4) of the paper.

Table 4: Total Predicted Counts per Group

Maize yield
Status

Below the average Above the average
Predicted cases 258 163

Source: Findings (2025)

Actual Group Predicted Membership

Table 5 illustrates the actual group and predicted group membership. The study results disclosed that out of
the 421 smallholder producers interrogated, 228 of them whose maize productivity was below the average,
were correctly classified with productivity below the average while 26 of the farmers were misclassified above
the average given their yield. On the other hand, 137 of the cases were correctly classified with yield above
the average while 30 of the cases misclassified. These results may prove that among the studied cases,
probably there is a great chance to argue that a high number of cases being below the average, may be
correctly placed justifying that they are failing to meet their expectation.
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Table 5: Predicted Group Membership (Confusion Matrix)

Actual Predicted group

Group Below the average Above the average Total
Below the average 228 26 254
Above the average 30 137 167
Predicted size 258 163 421

Source: Findings (2025)

Quadratic Discriminant Prediction

Table 6 indicates the model results using the quadratic classifier function. In the confusion matrix, the findings
indicate that out of 228 producers correctly categorized as below average, 30 producers were incorrectly
categorized as above average. Contrarywise, 26 producers classified as above average were below average.
This categorization accuracy directs the model's effectiveness in predicting productivity categories.
Furthermore, the findings revealed that the overall accuracy of the correctly classified cases was 0.867. The
smallholder farmers that were correctly classified to be below the average were 89.76% (sensitivity), whereas
about 82.04% (specificity) of the smallholder farmers were classified to be above average. This high accuracy
suggests that the proposed quadratic discriminant model can be reliably used to identify farmers who may
need support or targeting interventions aimed at improving the performance of these farmers. In this paper,
the interpretation of the classification metrics was based on: >=90% (excellent); 80-89% (good); 70-
79%(fair); <70% (poor) as proposed (Zhou, Obuchowski & McClish, 2011; Pepe, 2003).

Given the Kappa value of 0.721, the results indicate a substantial agreement between the predicted and
actual classifications. This signified that the model provides reliable classifications beyond chance. On the
other hand, the findings showed that the maximum posterior distribution (positive predictive value=PPV), the
probability of the farmers whose maize yield is below average given that their results are positive, was 0.8834.
The results revealed a high likelihood that producers identified as below average truly are in that category.
This enhances confidence in targeting support programs effectively. The minimum posterior distribution (the
probability of the farmers whose maize yield is above the average to be attained) i.e. negative predictive
value (NPV = 0.8405).

Based on positive predictive value results, it is likely to argue that the ratio of smallholder farmers truly
classified as below the average they really deserve to be below the established threshold, and hence they
fail to meet their expectation on maize productivity. On the other hand, the ratio of the net predictive value
may suggest that cases meet their maize yield expectation to some extent.
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Table 6: Predictive Membership using original data set Model Validation (Confusion Matrix and
Statistics)

Confusion matrix Below average Above average
Below average 228 30
Above average 26 137
Metric Value

Accuracy 0.867

95% CI (0.8308, 0.8979)
No Information Rate 0.6033

P-Value [Acc > NIR] <2e-16

Kappa 0.721

Sensitivity 0.8976

Specificity 0.8204

Pos Pred Value 0.8837

Neg Pred Value 0.8405

Prevalence 0.6033

Detection Rate 0.5416

Detection Prevalence 0.6128

Balanced Accuracy 0.859

'Positive' Class below the average

Source: Findings (2025)

Table 7 indicates the out-of-the-sample results based on the sample split approach. This is important to find
out if improves the model accuracy. The findings indicated a better accuracy rate of
(0.873(95% ClI :0.802-0.9256))

(0'867 (95% C1:0.8308,0.8979 )) Since the kappa statistic is close to 1, indicates that the model is very
reliable and accurate. Compared with other statistical tests, therefore, there is enough statistical evidence to
conclude that the test set provides more consistent outcomes with small errors, since most of the statistical
tests are within the reasonable range. Therefore, it is more likely to argue that the expected high maize yield
is difficult to achieve given the predicted results, unless some intervention measures are taken to rescue the
small farmers. On the assessment of the model fit using the test set, it was discovered that the model
indicates the soundness for the counts of the small-holder farmers whose maize yield is below the average
(Sensitivity=0.8837), while the ability of the model under this set indicates that the farmers whose maize yield
is above the average (Specificity=0.8500).

compared to the predicted results under the training sample
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Table 7: Validation (Test) Set Prediction Results

Confusion matrix Below average Above average
Below average 76 6

Above average 10 34
Metric Value
Accuracy 0.873

95% CI (0.802, 0.9256)
No Information Rate 0.6825
P-Value [Acc > NIR] 6.17E-07
Kappa 0.7146
Sensitivity 0.8837
Specificity 0.85

Pos Pred Value 0.9268
Neg Pred Value 0.7727
Prevalence 0.6825
Detection Rate 0.6032
Detection Prevalence 0.6508
Balanced Accuracy 0.8669
'Positive' Class below the average

Source: Findings (2025)

6. Discussion

The paper intended to find out the extent to which the sample split approach contributes to the body of
knowledge by revealing the likelihood of the smallholder farmers who are at risk of producing low maize
productivity. In line with the descriptive statistics, some indispensable findings have been revealed along with
studied small farmers. Firstly, it has been revealed that smallholder farmers experience a low average past
harvest from the maize crop. The low average maize productivity of the past harvest may contribute to low
motivation to cultivate more. Secondly, it has been found on average that, it is too expensive to buy fertilizers
compared to the large-scale farmers classified above the average. This may be attributed to the fact that the
study participants experience limited financial resources to afford to buy in bulk compared to the giant
farmers. Thirdly, on average most of these farmers use the local seed instead of improved seeds and this is
among the reasons that suggest the low yield. Dominantly, they use local seed may be because of the limited
financial and assets resources. Fourth, the findings showed that they are not able to keep a large number of
goats on average and probably fail to supplement the natural manure for restoring land fertility.

Based on the results in Table 2, the present paper has revealed crucial results in line with the statistical
significance. The low p-value of 5.218831e-58 for past harvest proposes that this variable has a meaningful
impact on maize productivity. This shows that interventions pointing to this variable could significantly raise
productivity. Significantly, the findings propose that the cost of fertilizers impacts productivity in terms of
affording to buy farm inputs. Thus, smallholder producers below average are likely to suffer because of high
input costs. This, in turn, may affect their capability to invest in essential resources for agricultural
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sustainability. Given the household size and livestock results, the findings propose that the household size
and the number of goats suggest that families with livestock may experience diverse production dynamics.
Thus, the findings suggest that livestock management is key to improving productivity. The local seed variable
affects productivity significantly among smallholder producers. The findings suggest that increasing the level
of productivity, access to improved seed varieties, or better seed management practices are key.

Concerning Table 3 of the presented results mean across the below and above the average, the comparison
across the identified key dominant variable has been taken into account. In terms of mean group comparison,
the results have revealed very interesting results. This means that each independent variable (past harvests,
cost of fertilizer, household size, quantity of local seed, quantity of maize sales, and number of goats) depicts
distinct variances between the two groups. Past Harvests: the findings depict that the past harvest for below-
average producers is 5.36 kgs, whereas for above-average producers, it is relatively higher at 17.12 kgs. In
this perspective, the results propose that the past harvest performance is a strong gauge of the present yield
likely. Cost of Fertilizer: small producers who are classified as below-average incur an average cost of
43,805.01 Tanzanian shillings (Tshs), whereas above-average producers spend 149,062.87 Tshs. This
discrepancy shows that the more efficient farmers may have a greater chance to invest in fertilizers, and in
turn, contribute to high yields. Household size: The findings show that the mean household size for below-
average small farmers is nearly 5.78, whereas above-average producers have a somewhat larger household
size of 6.48. The findings may suggest that larger households can contribute more labor for farming. Quantity
of Local Seed: the findings indicate that the below-average small farmers use an average of 4.24 kgs of local
seed, while above-average smallholders use 3.53 kgs. The results suggest that above-average producers
may use higher-quality seeds or more efficient practices, even with less quantity. Quantity of maize sales:
there is a stark contrast in maize sales: below-average producers sell an average of 1.62 kgs, while above-
average producers sell 12.23 kgs. This substantial difference highlights the economic implications of
production efficiency and market access. Number of goats: the findings indicate that the average number of
goats is 1.12 for below-average producers and 2.30 for above-average producers respectively. These results
propose that livestock ownership might be associated with better productivity. This in turn increases the
additional in-flow for boosting farming activities.

The QDA results show that both production-related factors and household characteristics significantly
distinguish between below- and above-average maize yield groups. Past harvest and fertilizer expenditure
were the strongest discriminators (Wilks' Lambda = 0.54 and 0.46, p < 0.001), emphasizing the role of input
use. Maize sales and household size also contributed, reflecting market orientation and potential labor
supply. Local seed use had a moderate effect (p < 0.05), while goat ownership was marginally significant.
Higher fertilizer spending among better-performing farmers may reflect not just investment capacity, but also
improved access to credit, markets, or extension services, underscoring systemic access disparities.

While the results show that above-average farmers spend significantly more on fertilizer, this difference may
not only reflect greater investment willingness or agronomic knowledge, but also underlying differences in
access to credit, extension services, or input markets. Farmers with better financial access or geographic
proximity to input suppliers may find it easier to acquire and apply fertilizers. These structural advantages
may amplify productivity independently of intrinsic farming practices, suggesting that input access
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constraints, not just individual decisions, shape yield outcomes. On the other hand, larger households may
offer more labor for farm activities, they also consume more resources, potentially straining food and income.
Therefore, the impact of household size on productivity depends on the balance between labor contribution
and consumption needs.

Based on the training sample, the study has revealed the highest positive predictive value results/posterior
mean distribution to be high compared to the net predictive value in the training sample. This represents the
average value of the parameter of the updated distribution given the observed measurement from the
selected input variables. In the quadratic classification estimated results, the posterior mean for each class
represents the estimated probability of that class given the input data where most of the sampled smallholder
farmers were found to produce maize yield below the average. This is a class having the highest estimated
probability. The highest posterior mean or highest estimated probability results imply that smallholder farmers
are likely to produce below the average and hence fail to meet expectations. The posterior mean intends to
detect the group that the model guesses to be the most likely or greatest plausible result for the selected
predictors. Given that assessing the model fit using the test set, the findings indicated that both sensitivity
and specificity are also used. Since their values are close to one for the cases being correctly classified below
and above the average, respectively, there is a low rate of misclassification (Kaivanto, 2008).

Furthermore, the apparent error rate was further compared to the out-of-sample (test set) to assess the
accuracy of the selected model. The results have discovered the smallest expected error (12.7%). The lowest
error rate signifies that the sample spilt results on out—of-sample is effective in increasing the accuracy
results of the classifier quadratic model (Shmuel, 2010). On the other hand, the current findings, based on
the sample partition based on the test, support the claim that the out-of-sample (test) performance is reliable
as benchmarked to the practical results depicted by the training set (Montesinos Lépez et al., 2022).

This is interesting because it addresses a core concern in predictive modeling: whether a model trained on
one dataset (training set) can generalize well to new, unseen data (test set). When the sample partition shows
that the QDA model performs similarly on the test data as it does on the training data, it indicates the model
has good out-of-sample reliability and is not overfitting. This is interesting because it demonstrates that the
model’s predictive power is not limited to the training sample; it generalizes well to new observations. The
alignment between test and training results supports the model's robustness and practical utility,
strengthening confidence in using the QDA model to inform real-world policy or decision-making for improving
maize yields.

In terms of generalized results, such as low rates of yield, the current study findings are comparable to the
past studies (Akudugu et al., 2012; Wiggins, S. & Keats, 2013; Woniala, J, Nyombi, 2014) as reported that
smallholder farmers are faced with low crop yield in developing countries. However, the previous studies did
not discuss the question of how likely the study sample of small farmers is to fail to meet the highest
expectation of maize productivity. Therefore, the present study has added value to the body of knowledge
including the analysis with likelihood analysis results on the status of the maize productivity. On the
performance of the classifier based on the training, the current study results have been judged by the
apparent error rates (13.3%). The current results do not conquer with previous findings as revealed by
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(Olarinde et al., 2010). Importantly, the present study has been well generalized as a resulting model of the
sample split approach.

Generally, the categorization accuracy directs the model's effectiveness in predicting productivity categories.
This high accuracy proposes that the proposed quadratic discriminant model can be reliably used to identify
farmers who may need support or targeting interventions aimed at improving the performance of these
farmers. In this present paper, the results revealed a high likelihood that producers identified as below
average truly are in that category. This enhances confidence in targeting support programs effectively

7. Conclusion

The present study was designed to find out the extent to which the sample splitting approach minimizes the
loss function of the quadratic supervised classifier by considering the case of maize yield in Tanzania.
Furthermore, it has been revealed that the discriminatory variables (past harvest in kilograms, quantification
of fertilizer in kilogram, quantity of maize sale, quantity of the local seed, household size, and several goat
rearing) that were retained aided in classifying the smallholder farmers to the respective classes of being
below. Through these retained subsets of variables, it has been discovered that quadratic discriminant
machine learning has improved its performance.

Given the methodological (proposed discriminant technique) justification, the findings indicated a test set to
outperform compared to the training set. On the other hand, the present study has revealed an interesting
result indicating small farmers are likely to fail to meet their expectations because the positive predictive value
or posterior mean is high with the test sample where loss function was found to decrease. This is an indication
that Also, more of the study participants produced below their expectations, which was not documented in
the previous studies. Again, the results discovered that the selected inputs add value by updating the belief
having been evidenced from the previous studies.

Along with the discovered results, however, the present study has come up with an answer to what factors
can contribute to better yield for small farmers. In this regard, the past yield, improved seed, quantity of
fertilizers used, household size of the source of manpower, volume of sales of the harvest, and number of
goats as a source of manure and income diversification via selling the goats.

The present study is important to farmers and policy practitioners because of the following key issues: Initially,
identifying Performance Gaps: by classifying farmers according to their yield performance, the paper has
uncovered the elements that lead to either low or high yields. This insight can enable farmers to comprehend
their position in comparison to their counterparts and identify particular areas of their agricultural practices
that may require enhancement. On the other hand, the above-average producers are investing more in inputs,
suggesting a “rich get richer” effect, where wealthier farmers continue to advance while poorer ones fall
behind. To address this, policies should promote Inclusive strategies that are essential to ensure all farmers
benefit from growth.

Secondly, customized agricultural practices: the findings obtained from quadratic modeling can assist in
formulating specific recommendations for various groups of farmers. For instance, those with yields below
the average may need targeted interventions, including optimized crop rotation methods, improved soil
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management strategies, or advanced irrigation techniques. Conversely, farmers achieving above-average
yields can be analyzed to uncover best practices that could be implemented by their peers. Thirdly, data-
informed decision-making: The findings from the research offer farmers tangible, data-informed insights that
can guide their choices regarding crop selection, resource distribution, and investment in innovative
technologies or practices. This approach can enhance risk management and facilitate more strategic
planning within their operations. With these results, the present study recommends the policy intervention
cutting across the underlined focus.

Economic recommendations: To improve smallholder maize productivity in Tanzania, interventions should
address the key factors of past harvest, fertilizer cost, household size, local seed use, maize sales, and goat
ownership. Expanding input subsidies through programs like NAIVS can ease cost barriers, while
strengthening community seed systems can boost access to quality local varieties. Promoting crop-livestock
integration and improving post-harvest practices can enhance sustainability and food security. Tailored
extension services and improved market access through infrastructure or digital tools are also crucial. These
efforts should align with national strategies such as ASDP |l for effective implementation. However, including
digital-based innovations could further strengthen the classification modeling with minimal risk, improving
precision and implementation efficiency.

Also, it noted that the variation revealed in terms of the identified key dominant discriminating variables
suggests that producers above average are likely to invest more in better farm inputs. This, in turn which in
turn leads to better harvests. In other words, better farm inputs influence households to enhance their overall
productivity and sales. Therefore, it recommends addressing these identified gaps to improve the efficiency
of the producers below average. Based on the sample division technique, on the other hand, the following
are important to be in place: first is the targeted Interventions; on identified high sensitivity and predictive
accuracy, the study recommends allowing agricultural agencies to focus resources on producers classified
as below average. This can improve their likelihood of increasing productivity as well as the economic
practicability. Secondly, the need for resource allocation is greatly important, this is because the findings
have revealed the category of farmers who are struggling. Therefore, the allocation of resources in terms of
subsidies, training programs, and access to better seeds and fertilizers is key.
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